Statistical Estimation of Optimal Portfolios for non-Gaussian Dependent Returns of Assets

نویسندگان

  • Hiroshi Shiraishi
  • Masanobu Taniguchi
چکیده

This paper discusses the asymptotic efficiency of estimators for optimal portfolios when returns are vector-valued non-Gaussian stationary processes. We give the asymptotic distribution of portfolio estimators ĝ for non-Gaussian dependent return processes. Next we address the problem of asymptotic efficiency for the class of estimators ĝ. First, it is shown that there are some cases when the asymptotic variance of ĝ under nonGaussianity can be smaller than that under Gaussianity. The result shows that non-Gaussianity of the returns does not always affect the efficiency badly. Second, we give a necessary and sufficient condition for ĝ to be asymptotically efficient when the return process is Gaussian, which shows that ĝ is not asymptotically efficient generally. From this point of view we propose to use maximum likelihood type estimators for g, which are asymptotically efficient. Furthermore, we investigate the problem of predicting the one step ahead optimal portfolio return by the estimated portfolio based on ĝ and examine the mean squares prediction error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Estimation of Optimal Portfolios for Gaussian Dependent Returns of Assets

This paper discusses the asymptotic efficiency of estimators for optimal portfolios when the returns are vector-valued Gaussian stationary processes. Then it is shown that the usual portfolio estimators are not asymptotically efficient if the returns are dependent. Numerical studies for the difference between the asymptotic variance of the portfolio estimators and the Cramer-Rao bound are given...

متن کامل

Performance of Portfolios Optimized with Estimation Error

We explain the poor out-of-sample performance of mean-variance optimized portfolios, developing theoretical bias adjustments for estimation risk by asymptotically expanding future returns of portfolios formed with estimated weights. We provide closed-form non-Bayesian adjustments of classical estimates of portfolio mean and standard deviation. The adjustments significantly reduce bias in intern...

متن کامل

بهینه‌سازی سبد سهام در چارچوب ارزش در معرض خطر: مقایسه روش‌های MS-GARCH و بوت استرپینگ

The main goal of this research is to calculate VaR index with parametric Markov-Switching GARCH approach for accepted companies in Tehran Stock Exchange and also selecting the optimal portfolio of their stocks. To calculate the index, data and information of weekly stock price of 10 representative firms during the period 2008-2014 has been used which account for 332 working weeks.The results fr...

متن کامل

Note on the Proportions of Financial Assets with Dependent Distributions in Optimal Portfolios

In this paper we shall study the proportions of the financial assets in optimal portfolios, where the portfolio is optimized by the maximization of its expected utility with respect to a given utility function. Our main goal is to investigate the magnitude of the proportions of the assets in optimal portfolios provided that the assets’ distributions display a certain type of stochastic dominanc...

متن کامل

Portfolio optimization when asset returns have the Gaussian mixture distribution

Portfolios of assets whose returns have the Gaussian mixture distribution are optimized in the static setting to find portfolio weights and efficient frontiers using the probability of outperforming a target return and Hodges’ modified Sharpe ratio objective functions. The sensitivities of optimal portfolio weights to the probability of the market being in the distressed regime are shown to giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008